

Objectives

• At the conclusion of the presentation, the participant will:

• Describe two new products/techniques for determining central line tip position

• Describe two techniques to reposition PICC

• List four factors to consider when selecting the appropriate vascular access device for an infant

• List three complications from peripheral and central catheters, including symptoms and management techniques

Passive Techniques: Repositioning Catheters Wandering catheter: It it changed once, it can change again Gravity Venous return Time Luck

	Effect of Body Movement on Peripherally Inserted CVC Tip Location					
Site	Abductio n	Adductio n	Flexio n	Extensio n	Head Rotation	
Arm - Basilic	1	\	+	1	45.75	
Arm- Axillary	1	+		19:10		
Arm- Cephalic	+	1	+	1		
Scalp/ Jugular	E:		+	1	+	
Leg			1			
The second	-		-	distribution Co.	STATE OF THE PARTY OF	

History When we removed the PAL after not being able to get blood return, we noticed this at the insertion site...

	Mode of Action & Dry Time	Spectrum of Action	
Alcohol	Denatures cell proteins Less than 1-2 minutes.	Gm+, Gm-, bacteria, fungi, viruses	Apply with friction away from site
Povidone- iodine	Destroys bacterial protein, DNA. At least 2 minutes.	Gm+, Gm-, bacteria, fungi, viruses	Circular outgoing motion for 30 sec
Chlorhexidine/ Alcohol 2% & 3.15%	Disrupts bacterial cell membranes Less than 2 minutes	Gm+, Gm-, bacteria, fungi, viruses	Central lines – 30 sec – 2 min (product dependent)
Chlorhexidine/A queous 2% & 4%	Disrupts cell membranes. ? Dry time	Gm+, <gm-, bacteria,< fungi, viruses</gm-, 	Circular outgoing motion for 30 sec

Properties of Skin Antiseptic Agents				
	Kill Time	Residual Activity	Removal Recommended	Inactivated by Blood or Body Fluids
Alcohol	Rapid	None		No data
Povidone- iodine	Intermediate	Minimal ~2 hours	Yes	Moderate to inactive
Chlorhexidine/ Alcohol 2% & 3.15%	Rapid	High As long as 2-7 days in single application	No	No
Chlorhexidine/A queous 2% & 4%	Intermediate	High, but requires cumulative effect in multiple applications	Yes	No

Antisepti	Associated with S c Agents	
	Effect	Alleviation
Alcohol	Chemical burns	Unknown
Povidone Iodine	Absorption with iodine causing thyroid suppression Skin reactions	Remove from skin
CHG/Alcohol	Minimal absorption Toxicity not reported Skin reactions	No recommendation to remove
CHG/Aqueous	Minimal absorption Toxicity not reported Skin reactions	Remove with sterile water following the procedure (aqueous CHG will not dry due to its soapy consistency)

History of CHG Use in Neonates • More than 40 years¹ • Use in bathing the newborn, umbilical cord cleansing, and wiping the skin to reduce infection • Few reports of significant adverse effects • Trace blood levels of CHG identified esp. premature newborns subjected to a variety of concentrations and repeated use. • ? Blood levels due to skin contamination rather than percutaneous absorption. • Skin irritation in infants <1000 grams, regardless of alcohol or aqueous base • 2% CHG/aqueous² • 2% CHG/alcohol³ • Pl irritation double that of CHG/Alcohol **IMullany, Darmstadt & Tielschl, 2006 2Andersen, Hart, Vemgal & Harrison, 2005 3 Garland, Buck, Maloney, Durkin, Toth-Lloyd, Duffy, . . . Goldmann, 1995

Adopting Evidence-Based Use of CHG/Alcohol in the NICU Barriers • Previous product labeling restricted use if < 2 months of age. • Updated product labeling January 2012: Use with care in premature infants or infants under 2 months of age. These products may cause irritation or chemical burns. • Skin reactions • Absorption • Fear of the unknown Facilitators • Emerging evidence • Improved CLABSI reduction • Minimal reactions • Adjusting use based on gestation & chronologic age • No toxicity associated with the minimal absorption • Realization that all skin antisepties problematic • More than half of NICUs in US are using

Survey of Neonatal CHG Use Survey of Neonatology Fellowship Directors in the United States ¹ CHG use 61% 51% of users limited use on basis of birth weight, gestational age or chronological age. Skin reactions (erythema, erosions, burns) occurring primarily in those weighing <1500 grams were reported by 51%. No difference in adverse events between the alcoholic or aqueous CHG preparations Survey of nurses inserting PICC in U.S.² CHG use 54% ¹ Tamma, Aucott, & Milstone, 2010 ² Sharpe & Pettit 2009

Can & Should CHG/Alcohol Be Removed From the Skin? • Can it be removed? • Unknown • Should it be removed? • Reduces persistent effect of antiseptic • Not linked to prevention of skin reactions • No studies on transcutaneous absorption following attempts to remove There is no evidence to support removal & it may defeat the proven benefits of CHG with an ↑ in CLABSI

Survey of CHG/alcohol Use & Removal During PICC Insertion • Pre-Survey - 21 questions • 7 questions - Demographics • 3 questions - Qualifying questions • 7 questions - Knowledge of CHG/alcohol use • 2 questions - Reasoning for method of use of CHG/alcohol, including source of knowledge about product use • 2 questions - Assessment of attitude regarding CHG/alcohol use • Post-Survey - 22 questions • 1 question - Program evaluation

Clinical Significance of Findings Significant lack of information or misinformation Risk to patients Knowledge can be changed through use of a targeted education program

References

Wilkins, G. V., Alex, C. P., Uhing, M. R., Peterside, I. E., Rentz, A., & Harris, M. C. (2009). Pilot trial to compare tolerance of chlorhexidine gluconate to povidone-iodine antisepsis for central venous catheter placement in neonates. Journal of Perinatology, 29, 808-813.

Garland, J. S., Buck, R. K., Maloney, P., Durkin, D. M., Toth-Lloyd, S., Duffy, M., & Goldmann, D. (1905). Comparison of 10% povidone-iodine and 0.5% chlorhexidine gluconate for the prevention of peripheral intravenous catheter colonization in neonates: A prospective trial. Pediatric Infectious Disease Journal, 14, 510-516.

Linder, N., Davidovitch, N., Reichman, B., Kuint, J., Lubin, D. Meyerovitch J., . . . & Sack, J. (1997). Topical iodine-containing antiseptics and subclinical hypothyroidism in preterm infants. Journal of Pediatrics, 131, 434-439.

References

- Lund, C. H., Kuller, J., Raines, D. A., Ecklund, S., Archambault, M. E., & O'Flaherty, P. (2007). Neonatal Skin Care. Washington, D. C.: Association for Womens Health, Obstetric, and Neonatal Nurses. Marschall J., Mermel, L. A., Classen, D., Arias, K. M., Podgorny, K., & Yokoe, D. S. (2008). Strategies to prevent central line associated bloodstream infections in acute care hospitals. Infection Control and Hospital Epidemiology, 29, 522-30. Mullany, L., Darmstadt, G. L., & TielschJ, M. (2006). Safety and impact of chlorhexidine antisepsis interventions for improving neonatal health in developing countries. Pediatric Infectious Disease Journal, 25, 665-675.

- Pettit, J. & Wyckoff, M. M. (2007). Peripherally inserted central catheter: Guidelines for practice. Glenview, IL: The National Association of Neonatal Nurses
 Payne, N. R., Carpenter, J. H., Badger, G. J., Horbar, J. D., & Rogowski, J. (2004). Marginal increase in cost and excess length of stay associated with nosocomial bloodstream infections in surviving very low birth weight infants. Pediatrics, 114, 348-355.

References

- Bingham, D., & Main, E. K. (2010). Effective implementation strategies and tactics for leading change on maternity units. *Journal of Perinatal and Neonatal Nursing*, 24(1), 32-42.

 Gomella, T. L., Cunningham, M. D., & Eyal, F. G. (2009). *Neonatology: Management, procedures, on-call problems, diseases, adn drugs* (6th ed.). New York, NY: McGraw Hill Medical.

 Institute of Medicine, (2001). *Crossing the Quality Chasm: A New Health System for the 21st Century*. Washington, D. C.: The National Academies Press. MacDonald, M., G. & Ramasethu, J. (2007). *Atlas of Procedures in Neonatology*. Philadelphia, PA: Lippicott Williams & Wilkins.

 O'Grady, N. P., Alexander, M., Burns, L. A., Dellinger, E. P., Garland, J., Heard, S. O., ... (HICPAC), H. I. C. P. A. C. (2011). 2011 Guidelines for the Prevention of Intravascular Catheter-Related Infections 1-83. Retrieved from Centers for Disease Control and Prevention website:
- Porter-O'Grady, T., & Malloch, K. (2010). Innovation leadership: Creating the landscape of health care. Sudbury. MA: lones & Bartlett.

References

- Sankar, M. J., Paul, V. K., Kapil, A., Kalaivani, M., Agarwal, R., Darmstadt, G. L., & Deorari, A. K. (2009). Does skin cleansing with with chlorhexidine affect skin condition, temperature and colonization in hospitalized preterm low birth weight infants?: a randomized clinical trial. *Journal of Perinatology*, 29, 795-801.

 Safdar, N. & Maki, D. G. (2004). The pathogenesis of catheter-related bloodstream infection with noncuffled short-term central venous catheters. *Intensive Care Medicine*, 30, 62-67.

 Sharpe, E. & Pettit, J. (2009). *Survey of PICC Practices in NICUs in the U.S.* Submitted for publication.

 Tamma, P. D., Aucott, S. W., & Milstone, A. M. (2010). Chlorhexidine use in the neonatal intensive care unit: results from a national survey. *Infection Control and Hospital Epidemiology*, 31, 846-849.

 Thape, J. & Quast, D. (201). *Pilot study of chlorhexidine related skin breakdown in the ELBW*. Poster presented at the National Association of Neonatal Nurses Annual Meeting, Orlando, FL.

 Visscher, M., deCastro, M. V., Combs, L., Perkins, L., Winer, J., . . & Bondurant, P. (2009). Effect of chlorhexidine gluconate on the skin integrity at PICC line sites. *Journal of Perinatology*, 29, 802-807.